> 블로그 > 산업정보 > Design and Analysis of a Constant Force Compression Spring

Design and Analysis of a Constant Force Compression Spring

원천:Qianye 정밀 시각:2023-5-30

Compression springs are one of the most widely used mechanical components in various industries. They are designed to withstand compressive forces and provide resistance when compressed. A constant force compression spring is a type of compression spring that is specially designed to maintain a constant force over a wide range of deflection. In this article, we will discuss the design and analysis of a constant force compression spring.

Design

The design of a constant force compression spring starts with determining the required force and deflection range. The spring rate, which is the force required to compress the spring by a unit distance, is calculated by dividing the required force by the deflection range. The spring rate is expressed in units of force per unit length, such as pounds per inch (lb/in) or Newtons per millimeter (N/mm).

The next step is to determine the wire diameter, mean diameter, and number of coils based on the spring rate and available space. The wire diameter is the diameter of the wire used to make the spring, while the mean diameter is the average diameter of the coils. The number of coils is the total number of turns in the spring. The formulas for calculating these parameters are:

Wire diameter = (8 * F * L) / (pi * G * d^3)

Mean diameter = d + (L / pi)

Number of coils = (L / d) + 2

Where F is the required force, L is the deflection range, G is the shear modulus of the material, d is the wire diameter, and pi is the mathematical constant pi (3.14159).

The free length of the spring, which is the length of the spring when it is not compressed, is calculated by adding the deflection range to the solid length of the spring. The solid length is the length of the spring when it is fully compressed.

 

 

Analysis

After the spring is designed and manufactured, it needs to be tested to ensure that it meets the design requirements. The parameters that need to be tested include the force-deflection characteristic, free length, solid length, and spring rate.

The force-deflection characteristic is the relationship between the force applied to the spring and the corresponding deflection. This characteristic is measured by applying a force to the spring and measuring the deflection using a load cell and a displacement sensor. The free length and solid length are measured using a caliper. The spring rate is calculated by dividing the force by the deflection.

If the spring does not meet the design requirements, adjustments need to be made to the design or manufacturing process. For example, if the spring rate is too high, the wire diameter can be decreased or the number of coils can be increased.

Conclusion

Constant force compression springs are important mechanical components that are used in various industries. They are designed to maintain a constant force over a wide range of deflection and require careful design and analysis. By following the design and analysis procedures outlined in this article, engineers can ensure that the constant force compression spring they design and manufacture meets the requirements and functions correctly.

최근 소식

 풍력 터빈 슬립 링 브러시 홀더에 카본 브러시 스프링 적용
풍력 터빈 슬립 링 브러시 홀더에 카본 브러시 스프링 적용

시간:2022-9-14

풍력발전기 슬립링 브러쉬 홀더의 집진장치에 카본 브러쉬가 과도하게 마모되어 발생하는 사고를 방지하기 위해 카본 브러쉬별로 상시 닫힘 스위치형 경보부를 구성하고, 이들 경보부를 다음과 같이 연결한다. 알람 시리즈. 종래 기술에서, 접지 브러시는 ...

 Types of Springs and Their Applications
Types of Springs and Their Applications

Time:2023-8-28

Springs are mechanical devices that store and release energy. They are widely used in various industries and applications due to their ability to absorb shocks, maintain force or pressure, and control motion. There are several types of springs, each with its unique characteristics and applications. In this article, we will explore the different types of springs and their uses. 1....

 Manufacturing Custom Torsion Springs: Tailored Solutions for Your Needs
Manufacturing Custom Torsion Springs: Tailored Solutions for Your Needs

Time:2023-7-2

Torsion springs are crucial components in various industries, providing rotational force and energy storage. These springs are used in a wide range of applications, including automotive, aerospace, medical, and industrial equipment. However, finding the right torsion spring that meets your specific requirements can be a challenging task. That's where custom torsion spring manufacturing comes into play. With tailored solutions, you...

 Application of constant force spring in lifting window
Application of constant force spring in lifting window

시간:2022-9-14

The lifting window is different from the traditional internal opening, external opening and ordinary push-pull mode, but adopts the opening mode of lifting up and down. Because it is mainly popular in North America, it is also called American lifting window. It is one of the two major door and window categories in the world. The lifting window is more compact than...

 Constant Force Torsion Spring: A Comprehensive Guide
Constant Force Torsion Spring: A Comprehensive Guide

Time:2023-6-5

Introduction Torsion springs are an essential component of many mechanical systems. These springs store energy when they are twisted and then release it when they return to their original shape. The constant force torsion spring is a particular type of torsion spring that is designed to provide a consistent amount of torque over a specific range of rotation. In this...

 Corrosion Resistance of Spring Steel: An Overview
Corrosion Resistance of Spring Steel: An Overview

Time:2023-11-28

  Spring steel is a type of steel that is well-known for its excellent elasticity and resistance to deformation. It is widely used in various industries, including automotive, manufacturing, and construction, for applications that require high strength and durability. However, like any other metal, spring steel is susceptible to corrosion, which can significantly reduce its lifespan and performance. In this...

Product