Huis > Blog > Bedrijfsnieuws > Power Springs: Principles, Applications, and Design Points

Power Springs: Principles, Applications, and Design Points

source:Qianye Precision time:2024-5-30

Power springs, as a device for storing and releasing torque, work by precisely winding strip material around a mandrel and then embedding it in a specific housing or fixed ring. This design allows power springs to effectively store energy and release it in the form of torque when needed.

1. Wide Application of Power Springs

Power springs play a key role in many applications that require torque output. From common watches and toys to seat belt pretensioners, canister vacuum cleaners, and even dog leashes and badge reels, power springs provide these products with long-lasting power through their unique performance.

2. Design Points: Inner Diameter of Housing and Spring Material

When designing a power spring, the inner diameter of the housing is an important consideration. It determines the amount of space the spring material can occupy, which in turn affects the number of coils and performance of the spring. Typically, the spring material should occupy 40% to 50% of the housing space to maximize space utilization. This ensures that the spring has enough room to move during winding and unwinding, while avoiding excessive compression that causes performance degradation.

3. Box Width and Spring Design

When designing a power spring, box width is a critical parameter. This value is directly related to the maximum width of the spring steel, which affects the overall performance of the spring. Knowing the box width helps us to accurately calculate the space that the spring can occupy, ensuring that the effectiveness of the spring is maximized within the limited space.

4. Spring Box Height and Material Utilization

When considering the width of the box, we also need to pay attention to the height of the spring box. Although the spring box does not usually need to occupy all of the available space, knowing the overall size of the box can help us determine how to use the spring material most effectively. Once the design has been determined, we can recommend the most appropriate spring size and type based on the size of the shell to achieve the best performance.

5. The Importance of Mandrel Size

As the core component of the power spring, the size of the mandrel has a significant impact on the performance of the spring. The mandrel is located in the center of the housing, and the inner part of the spring is connected to it. The diameter of the mandrel not only determines the spatial arrangement inside the case, but also affects the number of available coils and the overall size of the spring.

6.Maximum Torque and Hysteresis

When discussing the performance of power springs, maximum torque is a key parameter. Torque is not the tension on the cable as we usually think of it, but the rotational force generated by the spring when it is uncoiled. The size of this force directly affects the size of the load the spring can drive or operate.

It should be noted, however, that power springs experience hysteresis due to the presence of friction. This means that the torque required to wind the spring is often greater than the torque required to unwind the spring. Therefore, this hysteresis effect must be taken into account in the design to ensure that the spring is stable and reliable in practical applications.

7.Torque variation characteristics

The torque of power springs is not uniform. The torque increases rapidly in the first few turns and the last few turns of the spring. In order to fully utilize the performance of the spring and avoid excessive stress, it is usually recommended to keep the first 20% of the turns available and the last 20% inactive when designing the spring. This means that in practical applications, we will only use the middle 60% of the turns of the spring to drive the load, thus ensuring the stability and reliability of the spring.

8.Life Cycle Considerations

The service life of a power spring refers to the number of complete winding and unwinding cycles that it can withstand. In general, the life of a power spring rarely exceeds 200,000 cycles, and in some applications where space and torque are optimized, it may be less than 100,000 cycles. However, it should be noted that this life is not absolute and is affected by many factors such as frequency of use, load size, environmental conditions, etc.

Therefore, when designing a power spring, we must set reasonable service life targets based on the requirements of the actual application. At the same time, by selecting suitable materials, optimizing design parameters and taking appropriate maintenance measures, the service life of the power spring can be extended and its reliability improved.

Latest News

 How to choose double torsion springs suppliers, what is double torsion springs
How to choose double torsion springs suppliers, what is double torsion springs


A torsion spring is a coil spring that stores and releases angular energy or holds a mechanism in place. They feature two legs extending from each end of the coil and are used in applications requiring torque or rotational force. This is accomplished by attaching the legs to external components. Then, as the elements rotate around the spring, the spring...

 Maximizing Your Potential with Our Optimization Design Service
Maximizing Your Potential with Our Optimization Design Service


Maximizing your potential is a crucial aspect of any successful business. One of the key ways to achieve this is through optimization design. At our optimization design service, we specialize in helping businesses reach their full potential by optimizing their design processes. Optimization design is the process of improving the efficiency and effectiveness of a product or process. It involves...

 7 tips for maximizing spring cycle life
7 tips for maximizing spring cycle life


Spring is a kind of mechanical part that uses elasticity to work. The parts made of elastic materials deform under the action of external force, and return to the original state after removing the external force. Also known as "spring". It is generally made of spring steel, and the types of springs are complex and diverse. The following tips to...

 Exploring the Mechanics of the China Rotational Spring: Insights and Applications
Exploring the Mechanics of the China Rotational Spring: Insights and Applications


Introduction: The China Rotational Spring is a mechanical device that plays a crucial role in various industries, including automotive, aerospace, and robotics. Its ability to store and release energy in a rotational manner makes it a versatile component in a wide range of applications. In this article, we will delve into the mechanics of the China Rotational Spring, providing insights...

 What Are the Mechanics of a Constant Force Torsion Spring?
What Are the Mechanics of a Constant Force Torsion Spring?


Introduction Torsion springs play a vital role in many mechanical systems, providing a constant force to achieve a desired movement or function. These springs are widely used in various applications, from garage doors to watches. This article aims to delve into the mechanics of a constant force torsion spring, explaining its structure, working principle, and applications. 1. Structure of a...

 Spiral spring design: the forgotten part of mechanical design
Spiral spring design: the forgotten part of mechanical design


Spiral springs are often taken for granted in mechanical design, but they are an essential component in many applications. In fact, spiral springs can be used to achieve a wide range of motion and force characteristics, making them a versatile choice for many applications.     What are spiral springs and what are they used for? Spiral springs are one...