Home > Blog > Common problem > Spiral Wound Torsion Springs: Everything You Need to Know

Spiral Wound Torsion Springs: Everything You Need to Know

source:Qianye Precision time:2023-6-10

Torsion springs are an essential component in many mechanical devices. They are used to provide rotational force or torque to power them. Among the different types of torsion springs, spiral wound torsion springs are the most common. They are used in various applications such as clothespins, mousetraps, balance scales, and other mechanical devices that require rotational force.

In this article, we will discuss everything you need to know about spiral wound torsion springs, including their definition, construction, properties, and applications.

Definition

A spiral wound torsion spring is a mechanical spring that is designed to rotate around an axis and exert torque in response to applied twisting forces. It works by storing mechanical energy in its coils when it is twisted, and it releases this energy when it is allowed to return to its original shape.

Construction

Spiral wound torsion springs are made up of a wire that is wound tightly around a mandrel or core. The wire is coiled in a helical pattern, creating a spiral shape. The number of coils and the diameter of the wire determine the spring\’s properties, such as its torque, deflection, and strength.

The wire used in spiral wound torsion springs is typically made of high-carbon steel, but it can also be made of stainless steel, brass, or other materials. The wire is chosen based on the application requirements, such as corrosion resistance, temperature resistance, or electrical conductivity.

Properties

Spiral wound torsion springs have various properties that make them useful for different applications. Here are some of the properties that you need to consider when choosing a spiral wound torsion spring:

1. Torque: The torque of a spiral wound torsion spring is the amount of rotational force that it can produce. It is determined by the wire diameter, the number of coils, and the material used.

2. Deflection: The deflection of a spiral wound torsion spring is the amount of movement or deformation that it can undergo before it reaches its limit. It is determined by the wire diameter, the number of coils, and the material used.

3. Strength: The strength of a spiral wound torsion spring is the amount of force that it can withstand before it deforms or breaks. It is determined by the wire diameter, the number of coils, and the material used.

4. Fatigue life: The fatigue life of a spiral wound torsion spring is the number of cycles or repetitions that it can undergo before it fails. It is influenced by the material used, the design, and the operating conditions.

Applications

Spiral wound torsion springs are used in many applications where rotational force is required. Here are some of the common applications of spiral wound torsion springs:

1. Clothespins: Spiral wound torsion springs are used in clothespins to keep them closed. The spring exerts a twisting force that holds the two halves of the clothespin together.

2. Mousetraps: Spiral wound torsion springs are used in mousetraps to power the mechanism that traps the mouse. The spring exerts a twisting force that holds the trap mechanism in place until the mouse triggers it.

 

 

3. Balance scales: Spiral wound torsion springs are used in balance scales to provide the counterforce that balances the weight being measured. The spring exerts a twisting force that opposes the weight being measured.

4. Electronic devices: Spiral wound torsion springs are used in electronic devices to provide the force required to activate switches or buttons. The spring exerts a twisting force that moves the switch or button into position.

Conclusion

Spiral wound torsion springs are a critical component in many mechanical devices. They provide the rotational force required to power them. Understanding the properties and applications of spiral wound torsion springs can help you choose the right spring for your application. Whether you are designing clothespins, mousetraps, or electronic devices, a spiral wound torsion spring can provide the torque you need to make it work.

Latest News

 China Continuous Force Torsion Springs: An Overview of Design and Applications
China Continuous Force Torsion Springs: An Overview of Design and Applications

Time:2023-7-26

Introduction Torsion springs are mechanical devices that store and release rotational energy. They are widely used in various industrial applications, including automotive, aerospace, and manufacturing industries. Continuous force torsion springs, in particular, are known for their ability to provide a constant torque or rotational force throughout their deflection range. This article aims to provide an overview of the design principles...

 The constant force spring acts on the lifting of the electric fan
The constant force spring acts on the lifting of the electric fan

Time:2023-5-24

When the traditional electric fan moves up and down, it will be affected by gravity. When it falls, it will quickly drop to the bottom point, and when it rises, it will be very heavy, which will greatly affect the user experience.   The constant force spring is a kind of strip that can be stretched, retracted automatically and maintains a constant...

 Spiral Torsion Spring: A Guide to Understanding and Designing
Spiral Torsion Spring: A Guide to Understanding and Designing

Time:2023-6-10

A spiral torsion spring is a type of spring that is used to create rotational or twisting motion. It is also referred to as a clock spring or a hairspring. These springs are commonly found in a variety of products, including watches, clocks, toys, and automotive engines. In this article, we will provide a guide to understanding and designing spiral...

 Long Compression Springs: How They Work and Their Applications
Long Compression Springs: How They Work and Their Applications

Time:2023-6-15

Compression springs are mechanical devices that are designed to store energy by compressing under a load. Long compression springs, as the name suggests, are compression springs that have a longer length-to-diameter ratio than standard compression springs. This aspect allows them to produce a greater force and maintain their length under a load. In this article, we will discuss the mechanics...

 Variable Force Springs: Versatile and Adaptive Spring Solutions
Variable Force Springs: Versatile and Adaptive Spring Solutions

Time:2023-4-28

Variable force springs are an innovative and versatile solution to a range of engineering challenges. These springs can be used in a wide variety of applications, from simple mechanical assemblies to complex industrial machinery.At their most basic level, variable force springs are springs that exert varying amounts of force throughout their range of motion. This makes them a perfect choice...

 Design and Application of a Constant Pressure Spring
Design and Application of a Constant Pressure Spring

Time:2023-6-8

Springs are an essential component of many mechanical devices, and their functionality can be greatly improved by incorporating a constant pressure spring. A constant pressure spring is a type of compression spring that is designed to exert a consistent force over a specified range of compression. This article will discuss the design and application of constant pressure springs, including their...

Product